ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells.

نویسندگان

  • Chong Tang
  • Rachel Klukovich
  • Hongying Peng
  • Zhuqing Wang
  • Tian Yu
  • Ying Zhang
  • Huili Zheng
  • Arne Klungland
  • Wei Yan
چکیده

N6-methyladenosine (m6A) represents one of the most common RNA modifications in eukaryotes. Specific m6A writer, eraser, and reader proteins have been identified. As an m6A eraser, ALKBH5 specifically removes m6A from target mRNAs and inactivation of Alkbh5 leads to male infertility in mice. However, the underlying molecular mechanism remains unknown. Here, we report that ALKBH5-mediated m6A erasure in the nuclei of spermatocytes and round spermatids is essential for correct splicing and the production of longer 3'-UTR mRNAs, and failure to do so leads to aberrant splicing and production of shorter transcripts with elevated levels of m6A that are rapidly degraded. Our study identified reversible m6A modification as a critical mechanism of posttranscriptional control of mRNA fate in late meiotic and haploid spermatogenic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells

Exposure of breast cancer cells to hypoxia increases the percentage of breast cancer stem cells (BCSCs), which are required for tumor initiation and metastasis, and this response is dependent on the activity of hypoxia-inducible factors (HIFs). We previously reported that exposure of breast cancer cells to hypoxia induces the ALKBH5-mediated demethylation of N6-methyladenosine (m6A) in NANOG mR...

متن کامل

The DEAD-Box RNA Helicase DDX3 Interacts with m6A RNA Demethylase ALKBH5

DDX3 is a member of the family of DEAD-box RNA helicases. DDX3 is a multifaceted helicase and plays essential roles in key biological processes such as cell cycle, stress response, apoptosis, and RNA metabolism. In this study, we found that DDX3 interacted with ALKBH5, an m6A RNA demethylase. The ATP domain of DDX3 and DSBH domain of ALKBH5 were indispensable to their interaction with each othe...

متن کامل

N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing

N6-methyladenosine (m6A) is the most abundant base modification found in messenger RNAs (mRNAs). The discovery of FTO as the first m6A mRNA demethylase established the concept of reversible RNA modification. Here, we present a comprehensive transcriptome-wide analysis of RNA demethylation and uncover FTO as a potent regulator of nuclear mRNA processing events such as alternative splicing and 3΄...

متن کامل

Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m⁶A-demethylation of NANOG mRNA.

N(6)-methyladenosine (m(6)A) modification of mRNA plays a role in regulating embryonic stem cell pluripotency. However, the physiological signals that determine the balance between methylation and demethylation have not been described, nor have studies addressed the role of m(6)A in cancer stem cells. We report that exposure of breast cancer cells to hypoxia stimulated hypoxia-inducible factor ...

متن کامل

N6-methyl-adenosine (m6A) in RNA: An Old Modification with A Novel Epigenetic Function

N(6)-methyl-adenosine (m(6)A) is one of the most common and abundant modifications on RNA molecules present in eukaryotes. However, the biological significance of m(6)A methylation remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation of m(6)A may have a profound impact on gene expression regulation. The m(6)A modification is catalyzed by an unidenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 115 2  شماره 

صفحات  -

تاریخ انتشار 2018